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SUMMARY “ ,

A method is presented for the approximate calculation of the -
stresses and distortions in a box beam representing the main structural
component of a swept & with a carry-through section and with bulk-
heads perpendicular to the spars. The outer and csrry-through sections
of such a wing can be analyzed by existing methods if some means is pro-
vided for analysing the triangular section which connects them. In the
method presented the triangular section.is divided into free bodies and
then,equilibrium and continuity are established between these-bodies.
The result is a system of linear equations wMch cau be solved for the
rotations and translations of the three vertical edges of the triangular ‘
section.

The ap@ication of the method is illustrated by a numerical example
and the results are compared with previously published test data. The
agreement is fair, with the princiRal discrepancies being due to the
fact that the method is based on a very simple type of idealized struc-
ture which prevents the appearance of shear lag in the’results. Exten-
sion of the ba’sicapproach to permit the inclusion of sheer lag is
indicated. The effects of the shed and bending flexibility of the
bulkheads bordering the triangular $ection are investigated and are
shuwn to be importsnt.

.’

. INTRODUCTION

Experimental investigations of swept box beams (references 1 and 2)
have shown that the stresses and distortions in a miept wing can be
appreciably different in character from those that would exist if the
root were normal to the wing axis. The principal effect of sweepback on
the stresses occurs under bending loads .and consists in a concentration
of bending stress and verticsl shear in the rear spar ne= the fuselage.
With regard to distortions, the effect of sweep is-to produce some twi~
under loads that would produce only bending of an unswept wing and some
bending under loads that would produce only twist of an unswept wing.
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A relatively small smount of theoretical work has.thus far been
published on the analysis of swept whgs of the shell type. Reference 3
presents an energy method for determining influence coefficients of a
swept box beam with bulkheads parald.elto the flight path, and refer-
ences 1 and 2 contain a semiempiricalmethod for the deflection analysis
of a swept box beam with bulkheads perpendicular to the spars. NO pub-
lications ere known to be available on the stress anslysis of a swept
box beam with either type of bulkhead arrangement.

The purpose of this paper is to present a method for the calcula-
tion of both stresses and distortions of a swept box beam-representing
the main structural component of a swept wing with a caTry-through sec-
tion and with bulkheads perpendicular to the spars. The analysis is
based on the four-flange idealized structure illustrated in figure 1.
h a four-flange box beam of this type the carry-through and outer sec-
tions can be analyzed by existing methods for unswept four-flange box ,
beams H some means is provided for analyzing the triangular section
which connects them.

A method is presented for analyzing an idealized representation of
the triangular section end for establishing continuity between the parts
of the box beam; consideration is also given to the relationships between
the idealized and actual structures and a comparison between the stresses
and distortions calculated by this method and the experimental data of
references 1 and 2. h the discussion, the effects of shear lag, which
the method cannot give, are considered and an extension of the basic
approach to permit their in+sion is indicated; also, the importance to
the analysis of ‘includingthe shear and bending flexibility of the bulk-
heads bordering the triangular region is demonstrated. A complete
numerical exsmple is worked out in an ap~ndix.
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SYM20LS

Principal Concepts

area, sgyare inches

length of bsy, inches

coefficients of matrix

arbitrary constants h solution

width of

width of

outer section, inches

csrry-through section,

.

of a differential equation

inches
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x

depth of box beam or bulkhead, fiches

modulus of elasticity, psi

force &up statically eqyival.entto a bend@ moment, pounds

-* Stiftiss parameters

modulus of rigidity, psi

width of p~te, inches

moment of inertia, inches4

torsion constant, inches4

stiffness factors of outer and

length of outer

length of besm,

bending moment,

summations used

section, inches

inches -

inch-pounds

in appendix B

carry-through

axial load in flange or stringer, pounds

area mament, incheS3

shear flow; pounds ~er inch

ratio which has the value +1 for symmetrical
sntisymmetrical loads

torque, inch-pounds

sheet thickness, inches

(
strain energy, inch-pounds

displacement in the x direction, inches

verticsl shearing force, pouuds

sections

loads and -1 for

downuard displacement or deflection, inches
.

sel.f-equilibrating,statically indeterminate force group, pounds

.
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X,y>z rectangular coordinates, inches

T distance fran front spar to a specified center, inches

Y sheex strain

b? “ ~ndimensional parameters used in discussion of idealization

e angle of twist, kadians ‘

A angle of sweep, degrees
.

L effective tidth, inches

v Poissoritsratio (assumed to be 1/3)

‘v effectiveness factor

a normal stress, psi

T shear stress, psi

.0 stress function .

.

I

+,$ joint rotations, radiahs (see fig. 4)
.

Subscripts

Subscripts&=e used chiefly to designate the locat,ionof a dimen-
sion, force, or stress, as follows:

b cover of the box beem”
t

c web of the box beam or bulkhead ‘

F,f ‘front spar or flange (see fig. 7)

L left-hand end of beam

2 along length of besm
o

z

}

valueat x=2
(appendix B)

o value at x = O

.

.
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R,r

R

X>Y

s

1,2,3...n

plate

rear spar or flange (see fig. 7)

right-hand end of besm
\

coordinate axis

stringer .

specific locations shown in figures; also,
stiffness factors

The single exception to the foregoing convention is:

e ef-fectivewhen applied to area, thiclmess,
inertia

Sqerscripts are used to

Superscripts

designate stresses and
produced by different types of action, as follows:

B, bending

F F-force group

R rigid-body displacements

T
.

torsion

w m-
x X-force group

a flexure

T shear

ANALYSIS

The type of idealized
is a four-flenge box besm,

. .. .. . . . -....—— .. . .. . . . .. .. . .. _
.. - . .

.“ ,.

OF THE IDEALIZED STRUCTURE

.

qmbers to identify

or moment of

distortions

B&sic Assuluptions

t

structure analyzed is shown in figure 1. It
which is considered swept back in order to

1. ..=.. —-- - —,:- .--.-—. . . . . .:: —--7-=- —— —-—- —-
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,

avoid ambiguity in the designation of the front aud rear spars. The
sweptback parts are made up of two triangular sections and two rectan-
X outer sections which are symmetrical about and continuous with a
rectangular carry-throu@ section representing the part of the wing
within the fuselage. The outer end carry-through sections contain bulk-
heads which are placed perpendicular to the spars but the triangular
section contains no bu~eads. All cross sections are symmetrical about
a horizontal plane through the mid-depth of the spars.

The box beam is supported, either rigidly or elastically, at the ‘
four corners of the carry-through section so that the reactions are
simple vertical forces. It is loaded by a series of verticsl forces as
shown in figure 1. The’resulting stresses are within the elastic range.

The lo~itudinal direct stress h the idealized structure is assumed
to be carried ODQ by the concentrated areas at the corners of the cross
section, and the side walls (spar webs) and covers are assumed to support

. . sheti stress o@y. The ‘shearflow in the triangular cover sheets is
assumed to be constant throughout the element (q5 in fig. 2). This
assumption implies the existence of uniformly distributed normal forces
on the hypotenuse of the triangular cover sheet but, since the adjacent
carry-through section can carry normal force only at its corners, these
distributed forces are lumped into two static-y equivalent concen-
trated forces (P5 in fig. 2) at the ends of the hypotenuse. This
assumption of uniform shear stress in the triangular sheet is approxi-
mately justified by the eqerimental data of references 1 end 2.

The two bulkheads which border the triangular section are assumed
to be besms with finite shear and bending stiffness in their own plane
but with no resistance to distortion out of their plane.

l%e relationship between the idealized structure described above
and an actual struct&e is discussed subsequently.

Method of AIlki@3iS

The method of analysis is based on the assumption
aud carry-through sections can be analyzed by existing

that the outer
methods end that

all that is then required is a means of establishing continuity between
them through the triangular section. b order to accomplish this result,
the structure is divided into a number of component parts as shown in
figure 2. The forces assumed to exist on the cut sections are also
shown.

The first step in the -sis is to consider the vertical edges of
the triangular section (joints 1, 2,-and 3) as free bodies (fig. 3) and
to write equilibrium equations for them. These equations include two

e
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for moment e@librium and one for vertical shear equilibrium at each
joint or a total of nine equations. The number of equations is con-
siderably less than the nuniberof unknown forces, and the problem is
therefore statically indeterminate. The number of egyations, however,
is exactly equal to the number of displacements required to specify t~e
attitude and position of the three joints. These displacements include
two rotations and a vertical translation of each joint, as shown in
figure 4.

The next step in the analysis, therefore, is to establ$sh force-
displacement relationships for each component of the structure shown in
figure 2. Through these relationships the forces appearing in the
equilibrium equations can be replaced by the joint displ.ac&nts and the
loads applied to the ‘structure. The nine equilibrium equations then
contain as unknowns”only the nine joint displacements aud can be solved
simultaneouslyfor the displacements. Once the joint displacements are
known, the force-displacement relationships can be used again to deter-
mine the stresses and distortions of the entire structure.

H one, or both, of the bulkheads (l-3 or 2-3) is,assumed rigid
in its own plane, certain relationships among the joint displacements
are immediately evident; thus the nuniberof equilibrium equations needed
is reduced and the analysis is simplified.

b an analysis of this t~ many of the factors involved depend
upon the nature of the applied load (symmetrical or autisymmetrical,
bending or torsion) and it may therefore be advantageous to make a
separate analysis for each type of load and then superimpose the results
to obtain the desired solution. For convenience in the detailed develop-
ment which follows, however, provisions for both bendhg and torsion
are included stiultaneouslybut with restrictions that they are either
synnnetricalor antisymetricsl about the csrry-through section.

Joint-EquilibriumEquations

If the three joints shown in figure 3 are considered as free bodies,
a total of nine equilibrium equations.can be written, two for nmments
and one for vertical shesr at each joint, as follows:

Joint 1:
.

P7 - P~ -PI COSA=O

Vl++(plg-q)=o

(1)

(2)

(3)

o
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t

Joint 3: .

,

P2 -Plo=o . (4) ‘

(5)

(6) ,

.

P8+P4cos A- P3sin A=0 (7)

P6 - P5 -P4s~A - P3 cos A = O-. (8)

(%V+c -+qlo-
3

~+q3). o (9)

hsmuch as the number of unknown forces appearing is greater than
the number of equations, the problem is staticaI& indeterminate. The
principle of consistent displacements will therefore be used to obtain
a solution.

Force-DisplacementRelations .

The attitude-andposition of the joints csnbe completely described
by nine joint displacements,two rotations, and a vertical translation

.

at each joint (fig. 4). Thus the mntiberof unknown jotit displacements
is exactly equal to t~ nuniberof equilibrium equations, so that a solu-
tion is possible if sufficient force-displacement relations can be writ-
tento’eqress all the unknown forces in terms of the nine joint
displacements.

All the internal forces (Pss and q’s) shown in figure 2 canbe
~essed in terms of the unlmown jotit displacements and the loads
ap@lied to tk outer section, with the use of the force-disp@cement
relationships for each component of the structure. KU that remain are
the three vertical forces (V’s) at the joints which are a codxi.nationof
the vertical loads applied to the triangular section apd the statically
indeterminate support reactions. Since these forces are dependent upon
the nature of each individual problem, they will be temporarily treated
as lmown quantities; the modifications required for different types of
supports sxe discussed in a

The force-displacement
written ag indicated in the

subsequent section.
.

relationships for each co,prponentcan be
following sections.

—- _ . -. ---- . —. ~.7----------..‘- . . .:- Y.-:.-v- -—,......-----.—= .-. .. .,
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Beams.- The two bulkheads 1-3 and 2-3 and that gwrt of the front
1-2 bordering the triangu@r section can be ai@.yzed as beams sub-

jected to end shears andmomentk plus a runn3ng shear along the flanges.
This running shear results from the shear flows in the covers adjacent
to the flanges. The loading and distortion of a beam of this type is
illustrated in figure 5. ti.appendix A, this type of beam is analyzed
and the following general expressions are obtained for the end loads in— —
terms of the end-
parsmeters which
beam:

displacements, the running shear, and certain stiffness
include both the shear and bending resistance of the

where

.

()+4EI
‘Z3 Gctz2

‘:=l; ) .

12+4EI.-. —
~3 GetZ2

()
5=12

=-

()
.1 C2

G ‘fD3EI

.=g(!+~)

EI bending stiffness of besm

Get shear stiffness of beam .

(lo)

(~) .

(12)

,
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Specific force-displacement relationships for each of the beams can
he ol&ined by application of these general equations with the following
results:

(13)

Bulkhead 1-3: .

@l-v3cos A+@3sfi A+2(a W1-W3
~ = (a - ~)13 - ‘)13 #se&A

—.
b sec A

%3 @7 +

P9 = -a13@l -

%3 @ +

p8 = -B~3@~ -

%3(% +

Bulkhead 2-3:

~~ - (16)
.

1313(~ cos A -@@ A)-(a-P )13--

!3U) (17)

%3($3cos A - #3 S= A) + (a - ~)13 ‘.+-

%)

‘la= ‘P23*3 + a23*2 + (a - P)23

(18)

(19)

(20) ‘

(21)

“

.

,

.
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ti these eqyations the subscripts 12, 13, and 23 applied to,the
stiffness parameters a, j3, 5, and c refer to the front spar 1-2
and the two bulkheads 1-3 and 2-3, respectively. Several unhmwnforces,

-w> Q) ~52 ~7> - q~, w~ch do not occur in the joint equi-

librium equations, appear on the rifit-hand sides of equations (13) to
(21); these forces, too, can be expressed in terms of the nine joint dis-
placements when the other structural components are considered.

Trimgular cover sheet.- The triangular cover sheet is assumed to
carry a uniform shear flow q5 along its mutually perpendicular edges

(l-2 and 2-3). In order that this element be in equilibrium, shear and
normal.stresses are required along the hypotenuse and the corresponding
forces are shown (fig. 2) as a uniform shear flow q~ act- Qow

that edge and a pair of concentrated forces ~ acting at the joints.

The equilibrium equations ae:

(23) ‘

Force-displacement ~lationships are obtained by assuming that the
maximum shear strain in the sheet is equal to the amount by which the
right angle 1-2-3 is changed. In terms of the joint rotations, this
shea strain is:

Then,

and the relations for qU and P5 follow

tiO~ (22) SDI (23).

Acot A- $$*+ !33)

immediately from equa-

(24)

(25)

Outer section.- That mrt of the structure outboard of bulkhead 2-3
acts as au unswept cantile=r box beam supported on a flexible root and,
as such, csn be analyzed by existing methods of analysis. The stresses-
and distortions at any point csa be ~essed in terms of the applied
loads, the distortions of the root, and certain elastic stiffness
factors. Then, the force-displacement relationships required to define
the internal forces at the root rxre:

. .. .. .-— .. .... ------ —7— . -., ——...
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P3 = lq_M- k2T + k3(@2 - @3)

%0 =k4M+~T- - fl~k3 (@2 ,

~ = ~v + ‘6T + ~(@2 - @3)

q3 = -klOv + ~ + k7(ti2- @3)

q4=k8V+ k9T-~(@2 -$3)

(27)

(28)

(29)

(30)

h these equations V, M, and T represent, respectively, the applied
vertical shear,’bending moment, and torqde (about some reference axis)
at the rmt of the outer section and the kts represent elastic stiff-
nesses of the outer section. The stiffness factors kl, @, ~ and
the like are functions of the distribution of the applied loads aud the
dimensions and material of the outer section, whereas k3 and k7
depend only on the latter. The gpautity $$2- @3 is a measure of the

q= of the root cross section and is the only root distortion
appearing in the equations, since the others are rigid-body movements
which do not affect the stress distribution. Thus, effectively, the
root bulkhead is assumed rigid in its own plane as far as the outer-
section analysis is concerned.

Any method of analysis can be used to determine the stiffness
factors provided that cross-sectionalwarping and its restraint are “
taken into,account. This provision requires a more refined approach
than is made in elementary bending theory. The stiffness factors are
the same for symmetrical and antisymmetricsl loadings but, since bending
and torsion produce different types’of effects, they have been separated
in the equations.. M order to evaluate the torque T, the loads must be
referred to a reference axis. The most desirable axis is one which makes
the stresses at the root due to the bending moment M equivalent to
those given by elementary theory, al.$houghit is not generally possible
to achieve this relationship at all stations. The so-called “shear
center” does not locate such an axis. The choice of a reference axis
will be treated at greater length in the section on idealization.

Csxry-through section.- The carry-through section, like the outer
section, is a box beam that can be analyzed by existing methods. .In
this case, however, the stress distribution is expressed in terms of
only the end distortions since internal end forces are the only loads
applied. The force-displacement relationships are then:

P6 = ‘U(*1 + $3 sfi A + #3 COSA )+kM(*l -*3sfiA:@3cosA)+.

k13pl + q) + w(kl - G) (31)

.. .... .. . . ~. ..-+.. -;.-. : . - ...:..-,. :.,. .-. ... . . ,.. - ., “,:,:- ,..,. .. ,.,. .. . .
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p7 = ‘15(*1 + ‘3 ‘fi A + @3 cos ‘)+ k@l - *3 sti A - @3 COS A) +

(32)h7(a + w3) + k18(wI - w3) ,

%=%9($1 +$3sh A+@3cOs A)+ k20(vl-$3S~A-f$3COSA)+

%&l + W3) + %2(W1 - W3) ‘ (33)

q7=$3(~l+V3 S~A+@3COSA)+~4($@3 Sin A-ff3 COSA) +

%25@l + ‘3) + %6(W1 - ‘3) (34)

%9 (i + W3) + k30(wl - W3) (35)

M these eqpations, the kfs represent elastic stiffness factors, which
depend upbn whether the loading is symmetrical or sntisymmetrical, as
well as upon the dimensions and material of the carry-through section.
They may be determined by any method of analysis as long as cross-
sectional warping and the shear and bending stiffhess of the spars are
considered. The displacements which appear have been so grouped that
they have a particular physical meaning. Thus, me quantities associated
with the first, second, third, aud fourth terms in parentheses represent
a bending type of rotation, a warpihg, a translation, and a torsion type
of rotation of the end cross section, respectively.

.

Solving for the Joint Displacements
.

fie force-displacement relationships (equations (13) to (35)) are
sufficient to express alJ.the internal forces in the equilibrium egpa-
tions in terms of the nine basic joint displacements andlthe applied
loads. Upon substitution,the nine equations involve only nine unknown

displacements; ~lYs .*I)

and they can then be solved

The equations obtained
containing many terms which

numerically for these unlmowns.
.

by direct substitution have coefficients
are tediuus to evaluate; however, a nuriber

.
. ..- — .-—- ——.-. ,=,....—.-.>s

~ -—-””, .: -... . :. .7.-,-”””-- ..-..---—— ——— - —-
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of combinations can be made which substantially simpli~ the final
equations. Equations (1) to (9) are combined as follows to obtain nine
simpler equations: m

El) - (8I =. A - (4) + (5) t- A (36)

p)+ (7rJ csc A + (4) + (5) cot A

:~3) + (6) + (gj

(4) ,

1
(5)%

(37)

(38)

(39)
.

(40)

b 6 t~-fS=( ) (41)

(7) = A + (5) (42)

(8) sec A - (5) tan A {43)

. %(9) sec A (44) ,

The resulting system of egyations is written in matrix form as
f01.1.ows:

% %22 %3 %4 %5 %26 %27 %28 %29

a31 a32 a33 a34 a35 a36 a37 a38 a39

a4~ ah a43 a44 a45 ‘au a4~ a48 a49

~~ 92 53 “ a54 a55 Y6 97 98 <9

a6~ a62 a63 %4 a65 %6 a67 a68 a6g

an a72 a73 ~4 an V6 an q8 qg

a8~ a82 a83 a84 a~ a% a87 a88 a8g

1-W1 92 ag3 ag4 95 ag6 agy ag8 agg

alo

%20

a30

ah

a50

a60

qo

am

qo .

The coefficients aij are given by the ~essions in table 1.

‘.

- (45)

—— .... . -- , ---— -. ~- ..-. .—. . —. _ . ...- ..—-... ,., ..— — —- ..-.
‘-.. . . . ....‘..”+... ... ......... .,;..’” “,... . -.
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The terms in the matrti of coefficients involve the elastic stiff-
ness factors and dimensions of the structure; the constant terms contain
elastic stiffness factors, the loads applied to the outer section, and
the vertical forces at the joints. Each of these joint forces contains
a component of the load applied to the triangular section and, in addi-
tion, V1 and V3 contain the support reactions which maybe statically

indeterminate. The loads applied to the triangular section sre so
divided among the three vertical edges that the resulting forces form a
statically equivalent system. The reactions depend upon the nature of
the supports and are introduced into the analysis as indicated in the
following sections. .

Rigid SUppOI’tSa- hthe case of rigid supports ~ and W3 -are

zero and there are thus seven unknown joint displacements which require
only seven equations for their determination. b the matrix, equa-
tion (45), columns 7 and 9, which sme the coefficients of ~ and w3,

respectively, can be immediately eliminated. The required seven equa-
tions are then obtained by tlieelimination of two rows, the logicsl ones
being rows 3 and 9 since they are derived from equations containing the’
unknown support reactions. After the joint displacements have been cal-
culated, V1 and V3 can be determined by substitution into equa-
tions (3) end (9).

Elastic SW orts.- For the case of elastic supports, all.nine equa-
tions are required but must be modified to include force-displacement
relationships for the supports. The joint forces can be expressed as
fOllows:

where

k

v’

,>

su~ort stiffness factor

component of loads applied

Calculating

.

Stresses and

to triangular section

Distortions

the Idealized Structure

Throughout

the complete box beamThe stress end distortion distributions for
have been defined in terms of the applied loads and the nine joint dis-
placements. Once these joint displacements have been determined by
solving equation (45), the procedures outlined previously can be reversed
and all of the forces at the joints can be calculated.
.

. ——7. =.. - —-..-.——— ....:-;~ - —— ----
—— ——- —- -
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Determination of the detailed distributions is slightly more com-
plicated. For the front spar and the two bulkheads bordering the tris
~ section, the equations of appendti A canbe used. For the outer
and carry-through sections, the complete stress distribution can be
determined from the analysis that was used to obtain the stiffness
factors kl to k30. The effects of rigid body motions, which do not

affect the stresses, must be included in the calculation of distortions.

The relationships between the computed stresses in the idealized
structure and
idealization,

the actual structure are discussed in the section on
which follows.

IDEALIZATION OF AN ACTUAL STRUCTURE

Outer and Csrry-Throu@ Sections

r

The outer and c~-through sections are unswept box beems whi&
can be analyzed by existing methods of analysis. Since such methods are
by no means stsndard, however, a definite procedure is presented in
order tkt the idealization of the cmplete structure may follow a.
consistent pattern.

The basic assumption that the idealized outer aud carry-through
sections are conventional four-flange bcxiesimplies.that the normal
stress in the walls of the actu&l box beam varies linesrly between
adjacent corners. A generalized stress distribution of this type can
be represented by a linesr combination of the two stress distributions
shown in figure 6(a), one of which equilibrates the applied load and is
uniform across ths cover, while the other is self-equilibratingand
varies linearly across the cover. The uniform distribution is designst.ed
bending stress because it is obtained from elementary beam theory which
assumes that plane cross sections remain plane after loading. Similarly,
the linearly varying stress is designated warping stress because it is
associated with the warping of the cross section out of its plane.

The.normal stresses on the actusl cross section are representedby
four concentrated forces at the corners of the idealized cross section.
The total force at each corner mnsists of two components, one from the
F-force group correspondingto the bending-stress distribution and one
from the X-force group corresponding to the warping-stress distribution,
as shown in figure 6(b). The equivalence between the force group and
the corresponding distributed stress is determined on the basis of over-
sll statics of the cross section and the moment applied to each cover.
The effective flange areas of the idealized structure sre then chosen so
that the flange stress in the idealized structure iS equsl to the corner
stress h the actusl structure.

,,
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A cross section of the type shown in fi&e 7(a) can thenbe
idealized as follows:

(1) Obtain the equivalent cover (fig. 7(b)) by
actual cover and corner flangesl areas rep~esenting

capacity-of the webs; that is,

equivalent cover is therefore:

&) = Af+&tf+

&r and &f; the

.

17

adding, to the
the moment-carrying

area of the

A. + &r + b~ + E (As)n (46)
n

(2) Locate the centroid of the equivalent cover:

7

{
-L%tb+Ar+~r+

b‘-Ab2 x( )}As;n
n

(47)

(3) camte the moment of inertia of the equivalent cover about
a vertical axis through its centroid: .

(4) The effective area of each front flange is then:

(a) For bending stresses:

where I is the moment of inertia of the entire cross section about
the horizontal.axis of symmetry.

(b) For warping stresses:

Ib/b2
$=-F

(48)

(49)

(50)

. . -.., ..—---- ——. -—- -r . . . —;~- —=.. ———. -.— -—-—
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(5) The effective area-of the resx flange in each case is:
1

.

(51)

“/

H many equally spaced stringers are used, satisfactory results
can be obtained by treating them as an etguivalentsheet and,thus
elhinating the’evaluation of lengthy SunImations●

It is hnportant to note that a different effective area is
associated with each type of stress distribution, as should be expected,
since each is associated with a different typ of physical action;
therefore, if accurate results are to be obtained, the two types of
stress distributions must be completely separable in the analysis, that
is, they do not appear sim@taneously h the evaluation of any one
stiffness factor in equations (26) to (35). ~s separation is not
generally possible; however, one way to accomplish complete separation
in the outer section will be described. Similar considerations apply

i,

to the csrry-through section.

.

The outer section is an unswept cantilever box besm on a flexible
.

root and the forces on any cross-section as given h equations (26)
to (30) canbe expressed as the sum of: (1) forces that exist in the
loaded cantilever-on a rigid root and (2) forces that exist in ar
unloaded cantilever having the root warped an amount (@2 - 93). Since

root warping produces only warping stresses, the effective areas for
warping stresses (equations (50) and (51)) are used for the determina-
tion of the stiffness factors k3 and ~. The choice of effectiw

areas for the anelysis of the loaded cantilever is more difficult because
the application of vertical loads till, in general, produce both bending
and warping stresses; however, since torque loads produce only warping
stresses, it may be po$sible to locate some sxis along which applied
verticsl loads will produce only bending stresses at every cross section;
then, the loading canbe divided into verticsl forces applied along this
sxis and torques about this axis. The stress types sre thus separated
and the effe&ive areas for bending stress (eq&~ions
be used to calculate the stiffness factors associated

(10ads kl, k4, ~, ~ ad klo) snd the effective

(49) d 151)) f=-
with the vertical
areas for warping

.

.

.
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stresses (equations (50) and (51)) can be used to calculate the stiff-
ness factors (% % , and ~) associated with the torque.

An axis of the type described obviously exists for a doubly
symmetrical cross section; such an sxis is also known to exist for a
four-flange boxbeem of constant cross section which is symmetrical
about a horizontal plane (fig. 7(c)). The location of this sxis,”at the
center which might be called the zero wsrping center of the cross
section, is given by:

(52)

where

1 ()111——
~=2tf+~

The zero warping center should not be confused with the shesx center.
Vertical loads applied along ~ axis through the shear center will
deflect the box beam without twisting it’,if the cross sections ere free
to wazp, a condition that is not satisfied at the rigid root of a
cantilever. Vertical loads applied along an sxis through the zero
warping center will result in a combination of deflection and twist, but
the cross sections of the box will not warp. If the cross-section is
doubly symmetrical, the zero wsxping center and shear center coincide at
the geometrical center of the cross section.

The preceding discussion has been exclusively concerned with the
problem of converting the actual structure into an idealized structure
tQat can be easily analyzed. After the analysis has been completed and
the magnitudes of the corner forces determined, the problem of con-
verting corner forces into stress distributions srises. This conversion
of forces is accomplished by determining the stresses corresponding to
each type of force group (F or X) end then summing the stresses to get
the total stress. The relationship between force groups end stress
distributions are shown in figure 6. The type of force group is.deter-
mined from physical considerations;for example, equation (26) shows
that P3 is c~osed of three forces of which lgM is of the bending
type whereas ~T ad k3 (@2 - @3) are of the -m type.

.
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With regard to shear stresses, the anslysis of the idealized
structure gives the average value of the shear flows in the walls of
the actusl structure. A more detailed shear-stress distribution can be
derived from the distributed normal stresses; however, this additional

.

.

refinement is probably
the basic solution.

unwarranted in

Triangular

The ideslized triangular section

view o? the _ approximations

Section

in

consists of three parts: the two
cover sheets which are h a state of uniform shear,’snd the front spar,
which is assumed to be a beam.

The thickness assigned to the idealized cover sheet should properly .
represent”the shear stiffness of the actual cover. For unbuckled sheet .
alone,,this thickness is that of the actual sheet. This value ~ould be
decreased if the sheet has buckled or increased if there are closed-
section stringers which contribute to its shear resistance. Smlar
considerations ap@y to the determination of the shesr resistance of

a any other element of the structure.

ia the calculation of the moment of inertia 0$ the front spar, a
contribution from the sheet and stringers in the cover of the triangular
section must be included to account for their ability to carry direct
stress. For simplicity, the moment of inertia of the idealized front
spar is assumed constant in the spanwise dtiection and thus may be deter- “
mined by treating the triangular bay as a rectangular bay of constant .
cross section equal in width to the triangular bay where it joins the
outer section; an effective area may then be assigned to the idealized
front spar by the method recommended for the outer section. This ideal-
ization will result in two moments of inertia, one for bending and one
for warping stress. Again, separation of these two stress systems in -
the anslysis is desirable %ut b this case it is o~y psxtly possible.
H the load on the outer section is torsion only, onl.ywarping stress
wiIl exist in the triangular section and the effective warping area
should be used. If the loads on the outer section are of the bending
type ofly, both kinds of stresses will exist in the triangular section
and direct separation is impossible; however, the warping stress is
usually small compared with the bending stress and in such cases
satisfactory results can be obtained by using the effective bending area.

Bulkheads

When
bordering
fact that

velues of flexurel stiffness are assigned to the two bulkheads
the triangular section, consideration-mustbe given to
bending of these beams is accompanied by extension or

the
.
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compression of the adjacent cover sheets. The amalysis in appendix B
gives the distortions of a combined bulkhead and cover sheet and the
moment of inertia of a simple bulkhead which has the ssme distortion.
The results cam be summarized as follows:

Ie = I(l+V) (53)

where

I moment of inertia of bulkhead alone, inches4

Ie effective moment of inertia of combination, inches4

v an effectiveness factor plotted in figure 8 as a function of

()
C22te

the nondimensional.parameter ~
.

c depth of bulkhead, inches

z length of bulkhead; inches

te equivalent thiclmess of the cover sheet, inches
tz~:d)

E modulus of elasticity, psi
.

COMPARISONBETWEEN

The accuracy of the method is

TBEoRYAND ExmRI14ENT ‘

demonstrated by comparing calculated
stresses and distortions with the test data of references 1 and 2. The
test specimen used is illustrated in figures 9 and 10 and the details
of the cekulations are given in the numerical example of appendix C.
The comparisons are presented graphically for each of the four test
conditions, symmetrical and antisymmetricel tip bending and
loads as

(a)

(b)

(c)

(d)

follows: ,

Distortions of the outer section in

Spanwise distribution of spar shear
hand paxts of figure I-2

figure Il.

stresses shown

torsion

in the left-

SpanWise distribution of flange normal.stresses shown in the
right-hand psx’tsof figure 12

Chordwise distributions of normsl stress at three spanwise
statidns in figure 13

. . -.. . . . ..=— ...-..— .- --:.,....-. .-. --- ~.. —---- -.—-— .—.
... .< - . . . . . .. . ., .,. . .. . . . ,-.
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b each case t~ sign conventions employed are those of references 1
and 2 which axe occasionally in conflict with those employed elsewhere ,
h this paper.

The test data in these figures =e presented in the usual manner
and several calculated curves are given to illustrate different theo-
retical approaches, as follows:

(a) ~ figures contain a heavy solid line which represents the
results of the numerical example of appendix C. The area under this
curve is vertically hatched in the stress plots (figs. 12 and 13).

.
(b) A dash-dot 1- appears in.some figures to show the effect of

superimposing shear-lag effects on the results of the numerical example.
The determination of these effects is described in the discussion.

(c) The stress plots slso cont#n &~tiesTwhich give results

obtained from elementary theory
(~> It> )m“

‘Ingeneral, the results of the numerical example (solid lines) sre
in fair agreement with the test data; however, much better agreement is
achieved when Shear-1ag effects sre added where applicable. Elementary
theory gives the least satisfactory results since it does not hil.ude
the effects of either sweep or shear lag. The discrepancies between the
calculations of the numerical exsmple end the experimental data are
primarily the result of analyzing en overly s~lified idealization of
the actual structure. The assumed idealized structure is incapable of

4.

.

.

distorting in &U. of the shapes assumed by the actual box beam; therefore, “
the anslysis cannot give completely accurate results. The most signifi-
cant effect of oversimplification is the neglect of shear-lag stresses.
Shear lag appears whenever the webs carry vertical shear stress and it is
characterizedbyan increase in normal stress h the vicinity of the’
flanges with a corresponding decrease in the rdst of the cover (see
fig. 14). There is slso an associated change in the shear stresses in
the cover.

The effect of shesr lag on the stress distribution is most evident
in the chordwise plots of figure 13. It appea& in the outer section
for the bending loads and tithe carry-through section for the anti-
_tricsJ. loads. In each case the effect is csrried over into the
triang&m section because of continuity.

, Shesr-lag stresses effectively reduce the stiffness of the structure
and thus increase its deflection. The cantilever beam deflection of the
outer section is increased by its own shear lag, but for this specimen
the increase was small enough to be neglected.
reduced stiffness of the carry-through section

More important is the
under antisymetrical

.

.
●
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loads”whichresults in
through section. This

an increased rotation of the ends of the carry-
effect causes only a rigid-body rotation of the

triangular and outer sections since the carry-through section is doubly
symmetrical. The effect of shear lag in the carry-through section was
estimated by reducing the moment of inertia of the carry-through section
(Ie = 0.2521) by the procedure described subsequently in the “Discussion” *
with the results shown in figure n(b) and n(d). For the antisymmetri- ~
cal bending load the effect was underesthted whereas it was over-
estimated for the antisymnetrical torsion load.

Some other effects of oversimplification are associated with the
idealization of the triangular section. The actual structure had a
short bulkhead (bulkhead 7, fig. 9) in the triangular section which was
neglected in the analysis. Its presence introduces additional restratits
which change the shear stress in the front spar (fig. 12) anodthe chord-
wise normal-stress distributions in the carry-through section (fig. 13).
Also, a number of approximations were used with regard to the effective
moment of inertia of the front spar which introduce uncertainties in
the

the
the

analysis.

Another factor that affects the agreeqent is the flexibility of
supporting jig used in the tests. This jig was assumed rigid in
analysis but deflected during the tests. Under symmetrical loads

(reference 1) these deflections amounted to a rigid-body rotation of
the complete structure and it was a dmple matter to correct the meas-
ured deflections; however, under sntisymmetrical loads, a small amount
of twist remained in the carry-through section after the rigid-body
corrections had been made (reference 2). The method of snalysis devel-
oped in this paper was used to cslculate the effect of the measured
carry-through section twist on the theoretical stresses and deflections.
For the antisymmetricalbending load the principal changes were in the
shear stresses in t~ carry-through section, as might be e~ected,
because of the torque required to twist this section. The warping
stresses also changed throughout the box beam and the deflection of the
outer section increased. For the antisymmetrical torsion load the twist
was small enough to be negligible. In general, these changes improved
the agreement between theory and experiment but were not of sufficient
magnitude to waxrant their addition to the’calculated results.

DISCUSSION

Determination of Shear-Lag Effects

The method presented in this
flange box beam which experiences
stress distribution in the “actusl

.

paper is for the
only first-order
structure varies

elldYSis of a four-
Warping. Thus, the
linearly between .
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corners and consists of the bending and warping stress components shown
in figure 6. An actusl structure experiences other types of cross-
sectional warping, a common one being the second-order or shear-lag
type which introduces a departure from linearity in the cover stresses
by superimposing self-equilibratingstress distribution of the type
shown h figure lk(a). The experimental data of references 1 and 2
show that shear lag-is important in the spectien tested because it
causes an increase in the flange normal stresses which is, in some cases,
larger than the changes caused by first-order warping and increases the
flexibility of the structure which increases the deflections. Some
mesms for calculating these effects is therefore necessary.

Any method usedto calculate shear-lag effects requires the
ansQsis of amore complicated idealized structure than the four-flange
box beam. Conforming to the previous assumptions regarding the stress-
carrying ability of the idealized structure, the minimum addition is a
single central stringer in each cover as shown in figure lk(b); other
additional cover stringers permit calculation of the effects of third
and higher order warping. These more complicated structures can be
introduced into the snalysis in either of two ways: (1) The basic
method can be extended to the direct analysis of the more complicated
structure an’dthus automatically include shear-lag effects. (2) The
results of the simpler aualysis can be corrected by’s process which
conibinese~erimental data and individual shear-lag analyses of the
outer and carry-through section. Each of these approaches is briefly

. described.

.1

.

The direct extension of the basic method involves the analysis of .
an idealized structure of the type shown in figure 15. The analysis
follows the procedure previously described but two new features are
introduced. First, more joints are involved, for which additional
equilibrium equations are reqpired and thus a larger system of stiul-
taneous equations must be solved. Second, force-displacementrelations-
hips for the outer, triangular, and carry-through sections must be
modified to account for the hew types of forces and distortions of the
idealized structure.

The correction process can take .ona variety of forms, two of which
were used to calculate the shear-lag corrections applied to the results
of the numerical ezle, appendix C, to obtain the dash-dot lines in
figures 11, 12, and 13. The shear-lag corrections for the outer section
were determb?d by us- the single-substitute stringer method (refer-
ence 4) to calculate the shear-lag stresses in the outer section. The
outer section was anslyzed as sn ordinary, qnswept box beam on a rigid
root and a constant empirical multiplying factor was used to obtain
good over-all agreement with the experimental spanwise and chordwise
normsl-stress distributions. The multiplying factor accounts for the
root restraint provided the outer section by the triangular section; .

—... >~-~- -.>--- ------ -- —~ . . . . -’..- ---
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this factor was found to be 0.77 for
1.28 for the antisymmetricd hending

the symmetrical bending load aud
load.

25
.

A somewhat different procedure was used to determine the shear-lag
corrections for the carry-through section because it was found that the
shear-lag stresses, caused by the antisymmetrical bending load, could be
approximated by a shear-lag analysis which assumed that the end cross
sections were restrained from warping. This approach, however, was less

satisfactory for the antisymmetrical torque load. The method used
analyzed the cover as en equivaleritsheet which carried both shear and
normal stress (reference 5) and it gave better chordwise aud spanwise
stress distributions than a s@ilar analysis which used the single sub;
stitute stringer method. The reduced moment of inertia used to deter-
mine the effect of shear lag on the distortions of the carry-through
section was also obtained from this analysis. ,

From considerations of accuracy, the preferred method for the
determination of shesr-lag effects is the direct extension to a more
complicated idealized structure; however, such an snalysis requires a
large amount of work. The ease with which the correction process can “
be used is a definite advantage, but it cau be applied, with assurance
of accuracy, only to structures closely resembling the test specimen
from which the empirical factors were obtained. Even then, the correc-
tion process is only fairly accurate because it cannot adequately ,
account for the interaction between the various parts of the structure.

Effects of Bulkhead Flexibility

In the an@ysis of unswept box besms the internsl bulkheads are
often assumed to be rigid in their own plane. This assumption yields
satisfactory results except when a discontinuity of,structure or loading,
such as a cut-out, introduces large loads into a bulkhead. A study of
the test results presented in references 1 and 2 shows that bulkheads 6
and 8 (fig. 9) of the test specimen were subjected to substantial shear
and bending loads; th&j their distortions may have an important effect
on the structure. The shear and bending flexibility of the bulXheads
bordering the triangular section is tncluded as a basic feature of the
method of analysis presented in this-paper although the development
could have been considerably simplified by assuming them rigid.

The effect of bulkhead flexibility on the stress and distortions of
the swept box besm of references 1 and 2 was investigated by solving a
series of numerical exsmples similar to that of appendix C. These
exsmples were for symmetrical tip bending and torque loads for the four
cases of bulkhead flexibility listed in the followtig table (all bulk-
heads other than bulkheads 1-3 and 2-3 (fig. 2) were assumed rigid):

---- --—- -—. . . -. ——- — .-.-.;- ...-~-r.-~.—.’.,, . ... --u-- -—.-y-: -. ----- -~.—.. ----—--—--—--
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Case Bu3Jshead1-3 ~~d 2-3

I Flexible Flexible
II Flexible “ Rigid
III Rigid Flexible
Iv Rigid Rigid

2232

.

Selected stresses‘anddisplacements calculated for each case sre

‘,

.

compared in figure 16. Despit= the fact that the bulkheads were con-

structed of &inch steei plate, appreciable errors occurred when they

were assumed rigid in their own plane. The effects of bulkhead flexi- ~
bility on the stresses were more pronounced for torsion than for bending
loads; however, for each type of load the solution for case ~ o~r-
estimated the warping stress in the outer section. The different root
distortions calculated for each of the four’cases lead to slightly dif-
ferent deflections and somewhat greater differences between the rotations
of the outer section. .

b general, the results indicate that the flexibility of the bulk- .
heads bordering the triangular section has an important effect upon the
stresses and distortions of a swept box besm and should be considered
in the analysis if accurate results are-to be obtained.

.

~ addition to the studies of bulkhead flexibility, sane investiga-
tions were made of the effect of the number of bulkheads in the tri-
~ section. For exsmple, a numerical analysis which used the
assumption of closely spaced rigid ~eads, often used ~ shell
analysis, gave very erroneous results for the stress distribution in
the triangular section. In all the cases considered, the number 6f
bulkheads in the triangular section had only a small effect on the
stresses outside of the triangular section. The eiperbmtal data-in
figures 12 and 13 illustrate the effect of an extra bulkhead on the
stresses within the triangular section.

., .
r

Extension of the Method

The method of analysis in the form presented, is not expected to
be gener~y applicable to the precise analysis of all swept wings

. because of differences in structural arra&ment and the degree of
idealization assumed; however, the basic approach can be used in many
situations.

Extension of the method to other t&s of sweptwings is straight
forward if the bulkheads are perpendicular to the spars. The modifica- .
tions required to obtain more accurate stress distributions have been

.

.
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indicated in the section on the determination of
Similar procedures are required for the analysis
that is, additional joints are created where the
bulkheads.

. .
27

shear-lag effects.
of multispm! box besms,
spars cross the

Application of the basic approach to swept box beams in which the
bulkheads are placed parallel to the flight direction introduces some
new problems. h the first place, a swept-wing of this type does not
have an outes section which canbe analyzed by existing methods. Exten-
sion of the method of joints, which is a featute of the basic approach,
to the entire structure substantially increases the complexity of the
solution and some other approach may be more desirable. A second prob-
lem is the establishment of force-displacementrelationships which cor-
rectly predict the physi@ behavior of the parallelogram-shaped cover
sheets.

COI?CLUDINGREMAIUW

A method has been described for the stress and distortion analysis
of a swept box besm with a carry-through section and with bulkheads
perpendicular to the spars. The method ig based on a simple four-flange.
box type of idealized structure and permits an estimation of the first-
order warping stresses that result from sweep but does not permit the
evaluation of higher-order stresses such as shear lag. Agreement with
experiment is therefore only fair; however, extension of the basic
approach to permit more refined analyses, which include shear-lag
effects and other structural arrangements such as multiple spars, has
been indicated.

,
The method assumes that the outer and carry-through secti’onsare

unswept box beems and thus csn be analyzed by existing methods. con-
tinuity is established between them through the analysis of the tri-

~ section. The analysis of the triangular section isolates the
structural joints as free bodies and gives an equilibrium equation for
each degree of joint freedom. The joint forces are expressed in terms
of joint displacements snd a set of simultaneous linear equations, which
completely defines the joint displacements, is thus obtained.

.
The method takes into account the flexibility, both as regards

shear and bending, of the bulkheads in and sround the triangular section.
The results of a numerical study have been presented to show that

\
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appreciable errors cau a~ear in the calculated stresses and deflections
if the usual assum~ion of rigid bulkheads is used in this region.

Langley Aeronautical Laboratory
Nationsl Advisory Committee for Aeronautics

Langley Air Force Base, Vs., August 17, 1950
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APPENDIX A

FORCE-DISPLACEMENTRELATIONSHIPS FOR REAMS

The beam analyzed is assumed to be of constant idealized cross
section with a web which carries only shear stress and subjetted to the
loading shown h figure 5(a). This load@ consists of flange axial
loads ~ and ~ at the ends of the beam, a constant running shear

flow q~ applied to the flanges and a constsnt shear flow ~ in the

web. The distorted shape of the beam under load can be described by the
end displacements wL end ~ and the end rotations ~ and ~

(fig. 5(b)).

Consideration of a differential element of the.besm (fig. 5(c))
yields the following equilibrium equation

dp—-qZ-qc=oax
(Al)

aud the following relations between loads and distortion

Substituting equations

%= (Gtfl+ (A2)

EI @P=— (A3)
Cax

(A2) and (A3) in (Al) yields

dw qlEI !@+@+~—=-—
dx Get ~2

and, since qc is constant, from equation (A2),

Equations (A4) and (A5) have solutions which
follows:

#=cl+c@c+c#

(A4)

(A5)

can be eqressed as

(A6)

Clx + *@ (13
)

qz
2+C33X (A7)’-&#+c4+~xw =

.

.

. . .-.- -, -7- - -.—-— -:-------- :7 ..- — - — .- --- +. —. .-— .- -. .—..-—-. =..— - — -------
-.,

- ._-..
. . . .. .
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“ where Cl, C2, C3, C4 are constants
boun&ry conditions. ti this ‘case,the
prescribed as fo~ows:

NMA m 2232

.

which can be determined from the

boundary conditions are .

\
Wx=o = ~ I

. (A8)

These boundary conditions require that the constants Cn have the
following values:

%:k )

.

- --lb

C4 = WL

An expression for the
of equations (A6) and (A9)

.

J

(A9)

load P can be obtained from the substitution
in equation (A3), as follows:

-—

.

Similarly, from

.

(4U.0)

eqyations (A2), (A6), (A7), and (A9), ‘

(All)

.

.

.

.

.
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The applied
if the foregoing

loads can
erpations

tions for the loads can be

‘.=4+

%= .p~ +

.

where

Y-

now be ~ressed in terms of the distortions
are evaluated at the boundaries. These rela-
conveniently written as follows:

(AMa)

(A12b)

(A12c)

()12——
(DGt .

(31J=1C2
6

u)

()cl 1 4EI
CD=--+—

EI 3 Gct12

It is often desirable to exp?ess the distortions in terms of the
loads. These expressions can be obtained from a few simple operations
on equations (A12),o Addition of eqwtions (A12a) and (A12b) gives the
following relationship between end rotations:

.

/

(A13)

-.. .—. —.- ..— — . ------------ —--- —~ —.,. .— - . -~ -.-— .—— — — —— - -- --
. . . .. . .. . .~.. .. ...--’ ...-.--”-.,- . . . “
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Substitution of (AJ-3)
alternate ~ressians

WR -WL=

w~ -wL.

.

.

NACA ~

into (A12a) or (A12b) yields the following
for the difference in end displacements

}

.

.

.

2232

“

.

(A14)

.

.——— —.—... —,—— --’ — --— ,>T> -—. ,— ;: --- ..-.. ~----.--,.. ,
-.

*.,.....”> ~ -,-:-.-,” . ... -:--
. . .,...”- . . ..:.!-,. . . “.
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APPENDIX B

EFFECTIVE MOMENT OF INERTIA OF WLHIEADS

The contribution of the cover sheets of the box besm to the effec-
tive moment of inertia of the bulkheads can be approximated by an
analysis of the plate-stringer combination shown in figure 17.

In the analysis the plate and stringer are assumed to be of dif-
ferent materials but of constant cross-sectional dimensions. The con-
tribution of the plate is expressed as an effective width which canbe
used to determine the area of an equivalent stringer having a totel
elongation under load the same as that of the stringer in the combined
structure. The method of least work (page 156, reference 6) is used to .
determine the state of stress in the plate and stringer. The stringer
stresses can then be integrated
determine the total elongation.

The stress distribution in
stress function @ as follows:

over the ‘lengthof the stringer to

the plate can be defined in terms of

The stresses given
librium conditions; the
must satisfy to fulfill

by equations (BJ.)automatically
differential equation which the
compatibility is

A solution of equation (B2) is givenby

a

(Bl)

satisfy equi-
str.ess function

(B2)

(B3)

----- —.. --—: --- --- . .-----Y-. .
.—-. — —

,-- -,, . . .....”... “~..- .. .. . ...-. ,-
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.In this’expression & and Cn are af%itrary constants which are
determined from the condition that the true stress distribution is that
which makes the strain energy of the combined structure a minimum. If
the plate width is assumed infinite, the stress function given by equa-
tion (B3) satisfies the boundsry conditions that all stresses vanish
at y=m and that ax = O when x = O or Z. The stress function
does not provide zero shear stress along the edges x = O and 2;
therefore, in effeet the plate has ribs along these edges. This viola-
tion of,boundary conditions is considered unimportant since, in the
actuel structure, these edges are restrained by the spar flanges. The
strain energy in the plate is given by the expression

.

‘P =

this

ax (B4)

_ substitutions from equations
expression gives

(Bl) and (B3) and integrating

%Cn . %2
2Gp ~ )

since

E-

Consideration of equilibrium of plate and stringer gives the
following expression for the load in the stringer -

Ps = P. - (P. -
J

Pz); - 2t Ow % w
.

The strain energy h the stringer csn be written as

(B5)

(B@

(B7)

which, upon substitution from equation (1%) and integration,becomes.

~2t2
us s&(Po’ +POPZ +P#) +=

~

2t
n2~2 + ~ r[ (-l)nPz 1-Po Bn

n= s n.1

(B8)
.

.

.

.

.—.—__._. — . . . .. —--.- —-- %..-”--— -“-”.”---” --- -.. r———— .

. . , *......-_ .- .,-.. *.. -.,. ;. .:-.,

---- . #. -- . . . . .
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The total strati energy of the system is then

u= Up+ us,
.

If the total strain energy (equation (w)) is minimized
to & and Cn, two equtions are obtained which yield
expressions for the constants

(B9)

with respect
the folMwing

—

422~o - (-l)nPJ
Bn = - (BIOa)

A##(l +~)(3 - p) nE~ + kzt
Ep AYr(l+ U)(3 - ~)

Cn = ‘%(&)p

. -~(+)

The total extension of the stringer csn now be determined as

where

.

(BIOb)

(Bll)

The effective area of the equivalent

~= A+A.te

E.

stringer is defined as

,
(B12)

.

te = t$
s

The elongation of the equivalent stringer is then

(B13)

..,. .— -.-+. —.. . .. . ------ --r —-- - .— —- .--—
.-

—— -—-— -- --—
..:. . . ...”.-. . .. . . . .. .
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Setting equation (BIL) equsl to equa;ion (1313)gives the following
e@ation %r the effe&i~ width -

. .

.

where

+ .
N= )“– L

—

Note that the applied loads do not
effective width. -

()Zte k
Tfi(l + 11)(3 - ~J

appear in the ~ression

A similar result can b-eobtained from
plate is assumed to be infinitely stiff in
In that case, the differential equation of

G analysis in
the transverse
the plate is

. .

(B14)

for

which the
(y) direction.

(1315)

The solution of equation (B15) which satisfies all the boundary condi-
tions for a plate-of width h is

00 J)Cosh
E

E

%h - Y)Gp z
u= h

mx

u

sin —
n=l E mh

z
cosh ~p ~

.

With the stresses defined in terms of u displacements

“x=%$

‘v=%$

end the strain energy of the plate given by

(iL6)

as follows

(B17)

.

.

.

.

.

.

...= -. . .. . . ---- -: . . .. . . .. . . ~-. ..-$.., ./, :,
....+.- .-. t---. .. .... ,. ‘-..-,-. “. .:, .- ,.. . ... .
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The procedure previously followed can be used to obtain

37

(~8)

(Big)

where

Examination of equation (B19) reveals that the effect of finite
plate width h is negligible whenever h ~Z s~ce the hyperbolic

tamgent!terms very nearly approach a value of 1. In this case only a
small difference is found between equations (B14) and (B19).

have

and

The two expressions for effective width (equations (B14)and (B19))

been evaluated for a range of values of A/2te when N = ~

h =me T.& results,are plotted in figure 18.

The results of the preceding analysis can be ~esented in a more
convenient form for the analysis of a swept wing. The moment of inertia
of the bulkhead slone can be related to the area of a substitute stringer
as follows:

I
12

= ~Ac (B20)

and the effective moment of inertia is

k= I ++e#
. =1(1 + v) (El)

. .. - -— ..-—. —.—~—...-.. —.. .— -= ——. . ---—.—’--- —...-. ..-. --------

. . . . .

. ..>..... , -. . ..’ . . .
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where

Figure 8 is a plot of v as.
tion (B14) being used in the

= ;(+)(+)

a function of c2Zte/1, the results of equa-
Solution.

.

.

.

.

.

—-— —. ...-1. ---.,.,r%= , .— ~.. — — . . .. . . #
. ... . . . . . . . . . . . .. . . ., ---

. . .L . ..... ...... . . ,., ..
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API?IINDIXc

NUMERICAL EXAMPLE.

Description of Spectien

The application of the method to an actual structure is illustrated
byan analysis of the untapered, 45° swept box beam of references 1
and 2. Its construction details and principal dimensions sre shown in
figure 9. The outer and csrry-through sections are of doubly-
symmetrical cross section and are divided into five end three bays,
respectively, by internal bulJrheadsplaced perpendicular to the spars.
It is important to note that the actual structure contains a short
bulkhead (bulkhead 7) within the triangular section and that its presence ●

is ignored in the analysis because the method of analysis assumes a tri-
angular section withno bternal bulkheads. Figure 10 is a photograph
of the specimen under test and illustrates the manner in which it was
supported at the four corners of the carry-through section. In the
amalysis which follows these supports are assumed to be rigid.

The dimensions of the three sections of the ideslized structure
are summarized in table II snd illustrated in figures 19 and 20. The
dimensions of the two bulkheads and that portion of the front spar
bordering the triangular section are given in table III together with
their calculated stiffness factors. The material of the spectien.was
2~-T3 aluminum alloy except for the steel bulkheads. These materials
are assumed to possess the following elastic properties:

Material , (p:i) (p:i)

2@-T3 lo.~x 106 4.0 x 106

Steel 29.0 x 106 11.o x 106

Loading Conditions

The box besm is analyzed under four different loading conditions,-
symmetrical and sntisymmetrical bending and torsion correspondingto
the test data of references 1 and 2. These loads are applied to the
loading bulkhead at the tip of the outer section; the bending being.
produced by a vertical shearing force of 2,500 pounds; the torsionby a

. . . .._ .- .__< ----- .,.~ -.-:.:--. -:----.-— -—. — --.---—-—-.-—————— — .——- . . . .—,. ,, . ‘. . .. .. . ...,. ,,
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pure couple of 43,420 inch-pounds. For convenience, these loadings
sxe hereinafter referred to by number as follows:

Loading 1: Symmetrical tip bending load of 2500 pounds

Loading 2: AntiSymmetrical

Loading 3: Symmetrical tip

Loading 4: Antisymmetrical

.

tip bending load of.2500 pounds

torque load of 43,420 inch-pounds

tip torque load of 43,42o inch-pounds

Analysis of the Outer Section’

Method of analysis.- The dimensions of the idealized outer section
● are given in table II and illustrated in figure 19 which also shows the

. notation that will be employed. The stress-and distortion distributions
for the idealized structure will be determined as welJ as the stiffness
factors required for the analysis of the complete structure.

Since the outer section is a cantilever box besm on a flexible
root, the stresses and distortions can be obtained
of the following solutions:

(a).Outer section with a rigid root and a tip
. 2500 pO@S

(b)

(c)

(d)

Outer section with a rigid root and a tip
43,420 inch-pounds

Outer section with the root warped

Outer section displaced as a rigid body

from the superposition

bending load of

torque load of’

A simplification of the analysis and the use of elementary theory
in some instances are possible because of the constant doubly-- -
symmetrical cross section. Further simplification is made by assuming
that all bulkheads are rigid in their own plane, although this assump-
tion leads to a slight violation of continuity because bulkhead 6 is
assumed flexible in the analysis of the triangular section. Figure 21
shows the two types of force groups which appear in this analysis.
Shear flows sre shown in addition to the-concentrated flange forces.
The sign convention used.with the warping group is that of reference 7.

Bending of a cantilever.-The outer section is considered to be
rigidly built in at the root and loaded by a central vertical ,shearing
force of 2500 pounds at the tip as shown in figure 22(a). The internal
forces and stresses ere those of the F-group and can be expressed as
follows:

. .

.

.

“

.

.

.. . .... . . ..+.. ———. . . .
,-. . “..

~-,.
,. ~..!,..,.. .. -. “, - -“,.- “ . “,

.“’. .: ,-,-~ -. ., .
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FM=
‘z

*(L - X) = 178.57(89 -x)

O-2+ =~(L -x) =97.01(89-x)

‘%B=~cF”=*=178.57 pouhds per inch

B= F qcB - “
‘c ‘c = — = 2289 PSi

t=

(cl)

(C2)

(C3)

(C4)

.
The ~eem bends without twisting end the deflection of the center line
consists of two components, that due to flexure & that due to shear
deformation of the webs. Thus,

$= T?J+W’ (C5)

where .

Wd= *(3L - X)X2= 0.43994(267 -X)X2

vWT _
2Gctcx

= 0.0005723x -

The distribution of stress and deflection is given in table IV(a).

(c6)

(C7)

Torsion of a cantilever.- The outer section is considered to be
rigidly built in at the root and loaded by a pure couple of 43,420 inch-
pounds at the tip as shown in figure 22(b). The internal forces and
stresses are thos”eof the X-group plus the shear stresses required to
equilibrate the torque and can be expressed as follows:

T
xnT

% ‘— A

.

(c8)

(Tt)c,nT = qc,nT=& +qc,nx = & +
xnT - Xn-lT -

2an
(C9)

-. . ..-. .--—— ..,-.-— —.-m —- ..=: .—— —- .-

$, ..,. .
. .

——. ..— —-.

. . . . .
“..-
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Tn Tn
(7t)b,~T = qb,~T = ~ + qb,~x = — -

%T : %-lT
2bc 2an

The X-forces are statically indeterminate;however, they can be

m 2232

.

(Clo)
.-

calcu-
lated by means of the foll&ing recprrenc= relation (reference 7) which
establishes centtnuity between bays:

- f#J - ( )~ +Pn+l %T+‘n+l%+lT=‘&Tn + &+lTn+l (C1l) .

where

. P=

f =

.in which A is the effective area for warping stresq.

Once the X-forces are known, the twist of one bulkhead relative to
the next cea be determined as follows (reference 8):

A9nT=()Ta x
an

+ Mn

where

(c12)

For the dimensions and stiffness parameters given in table II, the
. recurrence relation yields the following set of simultaneous equations

for the X-forces:

.

. . ..—-. —.7. - --- . . .

. ...; --’-. ..;,’..,, ,--- .--,.:.-.,- -... ., ... .. ... ,-,
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b

; .57806 0.57512 0 0 0

0 .575U -3.57M6 o.575~ . 0- 0

0 0.57511 -4.15317 1.75718 0

0 0 1; 75718 -4.72828 1.73718

0 0 0 “1.”75718 -2.36414
—

The solutions are

%T=-10.573

● X3T = -65.779

X4T = -398.673 .

%T = -920.751

%T= -2078.917

The distribution of stress and

warping of the root.- The
smount shown in figure 22(c).
those of the X-group which can
used in the preceding section.
conditions with the warping of
as follows:

The solutions of the system of

N
X3T

X4T

X5T

x6T
--

o-

0

0.

0

296.924

twist is given in table IV(b).

root of the outer section is warped the ,
The internal forces and stresses are
be determined by the method of enalysis
The only change is in the boundary
the root being related to the X-forces

p6x6w = :($2 - q

equations are then

X2W = -5612 ($2 - $$)

X3W= -349~5 (f12- $3)

X4W . -211615(@2 - ~~

I

(C13)

.. . . . -. . .. ...= —.-. — ..—-.-–- --z---.---.?.-————
. . . .-. .

——. . ------ . . . . . . .
. ,, ,. .. . .. . .’ . .. .. . . .
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●

X5W=J@8733@2 - $3)

yw = -u03~k(@2 - $3)

Table IV(c) summarizes the stress and twist distributions for

~ ((j2- fJ3, = 1 x 10-6.
.

Rigid-body displacements.- The outer section is
body displacements shown in figures 22(d) aud 22(e).
ments do not affect the stress distribution but Eive
a twist about its center line

(#. !z
b

plus a deflection of that center line .

)+@3x

given the rigid-
These displace-
the outer section

(C14)

(C15)

Superposition of solutions.- The complete stress and distortion
distributions csn be obtained by combining c~onents from each of the
preceding analyses. Since the basic expr=ssio~s sre the ssne for both
symmetrical and antisynunetricslloads, the stresses and distortions at
any cross section can be written as follows:

Loadingsland2 Loadings 3 and 4

*
~B+aW - ~T + 0“

% ~B - UW T-a - ~w

Tf
BW

‘Tc - Tc --r TW
c

. Tc

B w
Tr

TW
‘c - ‘c

-Tc - T
c

../”

(c16)
,

Tb wflb TW-Tb - Tb

e tY+ew #+eT+ew

w #+# $

The sign convention for the stresses is that shown for the internal
.

\

—— _ .— .- .. . - .~. ..::..~,— ~ --c . - -. >--- -------- . - -. -:“. ... . . . . . . . ... . . . . . . ,>..,..-. ;..,.. ...-.



ma TN2232 45

forces of the outer section in figure 2. Positive deflections and twist
move the front spar downward. S~lsr expressions can be written for
the forces at the root cross section from which the stiffness factors
given in table V canbe determined by inspection. ~ese are the stiff-
ness factors required for the analysis of the complete structure.

Analysis of the Csrry-Through Section

Method of analysis.- The dimensions of the idealized carry-through
section are given in table II arflillustrated in figure 20, which also
shows the notation employed. The stress distribution is determined
elong with the stiffness factors required for the analysis of the
complete structure.

Since the supports at the four corners of the csrry-through section
are assumed to be rigid (~ = w? = O), the stiffness factors associated
with the
sections
from the

(a)

(b)

The
fication

deflection and t~st of-the ends in the plane of the end cross
will not be required. The stresses can therefore be obtained
superposition of the following solutions:

Carry-through section with the end cross sections rotated out
of their originel planes

Cexry-through section with the end cross sections warpd out
of their original.planes

doubly-symetrical cross section permits considerable simpli-
of the analysis since in such cases the end rotation is a

result of the application of F-forces only and the warping is the result
of the application of X-forces only (fig: 21); however, a few complica-
tions are introduced because the splices in the center bay make it
st.i.fferthan the other two bays. The bulkheads are assumed rigid in
their own plane despite the fact that in the
triangular section, bulkhead 8 is assumed to

Since the analysis depends upon whether
symmetrical or antisymmetrical, the ratio.
that general equations, applicable to both
written. Then:

R = +1 when the loading is

R= -1 when the loading is

R

analysis of the adjacent
be flexible.

the end distortions are
is introduced in order

t~es of loading, cen be

symnstric.el

antisymmetricel

Rotation of the ends.- The ends of the carry-through section are
rotated, symmetrically or antisymmetricallyby the mount shown in
figure23(a). Equilibrium of internal forces requires that:

.-. ...-. —...—. ---- .—— -. ..-7 ~---- -.

,. , ,.- ,;, .7-.. -.-.;--.- .-—”-- .- — --— —--— ‘-- ‘“-... . ... ........ .. .. >.,. ,., ..-. ...-,..



Flo - Fg F9 - Fa

%,9F = %,lOF ‘—=
(C1l’)

alo 9,-
,,. .

The forces can now be related to ‘thedistortions by meanE”of equations (AI-3)and (Jl14)as
follow :

.,

...
“k) = !43 - &)(F8 + ‘9) (c18)

,,
.1

2

‘9 - Wlo = ?@lo - 2~ ()(-%%10
2F6 + F:()) (C19)

,.
;:

“.
.... -

~’;,

.,

and since

- Fg
W8 - wg -$99- 2F~ ( )(

2 F8 + 2F9)
+%9

;1
,;.,
.:.

=w~=o.. W8
. .

. ,:

.,”.i
,.
,. :

..!

. . 98 “ ~($1 +*3 ‘h A + ?3 ‘Os ‘)

.
.’ the rollowing relationships can be obtained:

(C20)

(K!l)

(c%)

(C23)‘

i%

t
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qcJ9F = qc,loF
1-R

= ‘e alo + (1 - R)~

(c25)

“(c26)

TQe stress distribution corresponding to end rotations of the smount

vl+V3 sin A +*3 COSA =1x10-6 is given in table VI(a), i.nwIILti “

.

()B=&
‘n In (C27)

(c28)

wqiw of the ends.- The ends of the carry-through section are
-cd, symmetrically or antisymmetricall.y,by the amount sh~ h
figure 23(b). Then, since

%0 % *1O %1.—=__=-F=-F
“% ‘e .

(C29)

and

the
for

The

,,
*8 = ~~1 -$3 BhA - $3 cos A) (C30).

method of reference 7 can be used to obtain theofoll.owing eqpations
the warping forces:

p9x8 - f@g + 39T = :(W1 -$3 sin A - 93 cos A) (C31)
.

(
-fgxe + Pg + PIc)

)- Rflo Xg + (310 - J9)T = o (C32)

torque in the carry-through section is statically indetemte for
antisymmetrical loadings but csn be determined from the condition that
one end does not twist relative to the other because of the rigid
supports, that is:

Aeg+Af310+l!B~=o (C33)

—._... .- .-,,——-- —-.-,-—--- . ---- - .- ..-. ----- _ =c-~ ~...’. . “-+. -.”’ ----- .“. “?.... . ... . .
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. .

which can be written as follows by use of the equations of reference 8:

4(1 - R)j9X8 - 4(1 - R)(J9 - jlo)% + @)9 + (&)lJ, = 0 (C34)

The stiffness parameters f, j,P)-~ have been previously

in
defined in the section “Anslysis of the Outer Section” of this appendix

.
and their numerical values for the carry-through section are listed
table .11. These values canbe used to obtain the following sets of
shul.tsneous eqpations end solutions:

Symmetrical loads:

T=O

Antisymetrical loads:

r3.349163-2 .874g4g

I-2.87k94g 7.096181

L .638154 -.310734

X(3=

%=

T=

1
0.0797693

-. 0388k1

.033691

1509857(wl

The

($1
stress distribution

-V3sin A-@3cos

1[
G 1.75 (Wl -$3sinA-@3cosA

)

%=
o

T o

-$3sinA- $$3cos A)

479367($1 -$3 sin A- @3 cm A)

corresponding to end warpings of

A) = 1 x 10-6 is given in table VI(b), iIIWhiCh

—~-z-., . -- . :: .
~-,->— ..=- ~----

y.
. .- :. :,”‘.”..-’. ..-.4.: ..-. .
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.

()Wx’
Un = In

-(W= 1 ~ ‘n-xn-lTc,n tc,n 2bc + 2% )

w (~Tn

)

~ ‘Xn-l
Tb,n =——-

tb,n 2bc 2%

(C35)

,

(c36)

(C37)

Superposition of solutions.- The complete stress distribution can .
be obtained by combining the components from each of the preceding
analyses. The basic expressions are the same for all types of loading;
thus, the stresses on any cross section can be written as follows:

, aF=#+aw

BaR=a ‘aw

‘f = -TCB - Tcw
.

BW
‘r =TC-T c 1

(c38)

. .

w
0 ‘b = ‘Tb

The sign convention for the stresses is that shown for the internal
forces of the carry-through section “h fi~e 2. Similar expressions
can be written for the end forces from which the stiffness factors given
in table VII can be determined by inspection. These ~e the stiffness
factors required for the analysis of the complete structure.

Stiffness Factors of the Beams
,

The dimensions and stiffness factors of the two bulkheads and the
portion of the front spar which bound the triangular section are given
in table III.

Since the nature of & normal-stress distribution in the
triangular-section cover influences the effective moment of inertia of
the front spa-, two values are given. They were determined as follows:

For bending stresses, Ie wa’staken as one-hall?the moment of
inertia of the doubly-symmetrical outer section. .

.—. - —— ... . .—. _ --—— ,_____ ..__. . . . .. .. —---- . ~ ._ _
,. . ..- .-’ ..:.,.,l.,.... . .. .,/ ..,: . . . ~,-,——-” — “-’ - — - — -,-.>,..,,.-.:,... .. ...... .,. .,
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For wsrping stresses, k was determined from
warping srea of the outer section; thus,

NACA TN 2232

the effective

. Ie = ~Ac2 = ~(0.863)(7)2 = 21.1 inchesk (C39)

The effective moment of inertia of the bulkheads includes a con-
tribution from the cover sheet of the box besm as determined from fig-
ure 8. The equivalent thickness of the aluminum-alloy sheet acting
with the steel bulkhead is given by the relat~ohship

‘e= sad = 0“050(%) = 0“0181 ‘n*es
(C40)

The shesr
appears in the

Triangular Cover Sheet

stiffness of the triangular cover sheet, which frequently
general equations, has the following value: ,

1 4.X 106)(0.050)(7) = 700,000 pounds~=_
2 J (C41)

The shear stiffness per unit width also appears and is

~=~700,000) =23,333

The Systems of Equations and

pounds per inch

Their Solutions

(c42) _

Sufficient data have now been obtained to permit evaluation of the
coefficients of the matrix (table I); however, since the supports have
been assumed rigid (~ = W3 = O), it win be unnecessary to evaluate
the coefficients of wl/b and w3/b. Furthermore, there are only seven
unknown joint displacements, which require only seven equations. The
logical equations to eliminate are equations (3) snd (9) since they
contain the support reactions V1 and V3, which sre statically indeter-
minate for the antisymmetrical loading conditions. The joint force V2
is zero because the loads are applied at the tips only.

. .
A different set of equations will be required for each loading

condition since the structure responds differently in each case. Thus,
the stiffness facto-rsfor the carry-through section sxe different for
symetricsl snd antisymmetricsl loads and the effective moment of inertia
of the front spar snd the loading tens sre different for bending and
torsion. The calculated coefficients are given in matrix form in

..-
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table VIII. Each block in the table has space for four values, one for
each loading condition. ,If a single values is given, that coefficient
is good for aid.four loading conditions; when two values are listed, the
upper one is for loadings 1 aud 2 whereas the lower one is for loadings 3
and 4; and if four vslues appesx, they are for loadings 1, 2, 3, end 4,
respectively, when reading from top to bottom.

Throughout the calculations~ a lsrge number of significant figures
have been carried, more than are justified by.the accuracy of the initial
data; however, the .tira figures were carried in order to obtain an
accurate check on the numerical work when the calculated internal forces
are substituted into the original nine equilibrium eqyations. The solu-
tion of the equations and the calculation of internal forces frequently
involve the dtiferences of large numbers and the find results are apt
to contain seversl significant figures less thm the initisl coefficients.

The solution of the systems of eqyations yields the
ments given titable IX. Many methods are available for
of stiultaneous linear equations; however, the method of
recommended because of its many practical advantages.

.
Calculation of Stresses

The flange forces and Shea flows in and around the

joint displace-
the solution
reference 9 is

triangular
section can be obtained fra the joint displacements by substi&ting
them back into the force-displacement relationships, equations (13)
to (35). The shear stress is given by the shear flow divided by the
sheet thiclmess; thus,

T .: (C43)
.

The flsnge stress in the front spar and bulkheads is obtained from the
flange force and the effective moment of inertia as follows: -

pc2
a
‘~ (C44)

.
The flange stresses in the outer and csrry-through sections must be
determinedly suumr@gup the various component stresses, equations (c16)
and (c38), since different effective sreas are associated with the
bending and warping stresses. The results of these calculations are
given in table X.

..

The stress distribution in the outer and csrry-through
be obtained as described in the analysis of these sections,

.

sections can
with joint

.

\

.-.. —--- — .—-...—.—- ,---- ~ —- ———-------- - -=--~ —- — ——. ... ...J --. , ,.. ..... . .. ;”. ... ... .. .... .. . “.. ..
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displacements substituted where necessary. The results exe given in
tables XI and XII, respctivel~. ,

.

Figure 12 .il.lustratesthe distribution of flange normal stresses
and spar shear stresses as calculated in this exsmple and compares them
with the experimental data of refererices1 add 2. !!2hedistribution of
normal stress in the cover at three selected stations is similsrly
illustrated in figure 13.

Calculation of Distortions

The distortions of the outer section canbe calculatedly adding
up a number of component disto~ions as provided in equations (c16).
The deflections of the individual spars csnbe obtained fra the
deflection and twist of the box besm as follows: ,

Wljl=w+&b

(C45)
1

% =w-
.P”
‘

The twist of the stiucture in a plane parallel to the flight path con-
tains a component of the twist perpendicular to the spars and a
component of the rate of change of deflection, but it is most easily
calculated from the deflections of the

The calculated results are-listed
compared with the experimental data of

.

.

individual spars.

in table XIII and are graphically
references 1 end 2 in figure 11.

.

.
.
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.

TAELE I.- COEFFICIENTS (~j) OF THE GENERAL MATRIX
,

IIEFININGTEE JOINT DISPLACEMENTS -

Coefficient Formula

an
k ’15 + ’16) - (k~ + k~] sec A + (a + 13)u cos A

%1 -(a +0j3)~ cos A ‘

a31 (k,~ + %0) - (%27+ %28)

a41 -P& COB A - ~ bu cos A

a51
Gtc

-— cos A
2b

a61 (a - i3)~ Cos A+ %(%2, + E23) sin A

% ($3 + ~4)b13 sec A - ~ 613 cos 2A.

a81 (k~ + k~) sec A + ~ sin A

%1 ‘~13(% + %4) + (%27”+%~b secA + ~
Gtc

(
~ G13 Cos 2A - ’23)

%2
o

(~ ~ ~)23 * A

(~ + ~)23 cot Aa22

a32 o

Gtc
a42 ~ 8U cot A

a52 *3~+~cotA -

a62 (a - ~)23 -tanA - ~(e12 + G23)

92 (~ + P)23 + ~ 513 cos Zllcsc A

0
a~ -(CL + B)23 t~A - ~

92 -(CZ- P)23 sec A - ~(~~3 cos 2A “-e23) csc A
——

.

... . . . .. .:. ‘.. . . -~. ,r.- - --- —--- o .- -. . -.:>’..,<. . ‘. ,., .. ..:. .,-,. ,’. ....:.: ..’. ‘“”--—––——–
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TAl?LEI.- COEl?FICmNTS (aij) OF THE GENERAL MATRIX

DEl?mmG THE JOINT DISPLA~ - Continued

Coefficient Formula

%3 E k15 - k16) - (kll - k12
u

tan A - (a+ P)23 tan A

-(a + 13)13cot A - (a + 13)23cot A%23

a33 ~ ’19- %0) - (%7 - %8fl ‘in A

a43 o

~23
a53 -~

a63 (a - ~)23 tan A

a73 (%23 - k24)~13 t~ A - ~13 - (~+ P)23

a83 (% - %2)
tan A +“(a + ~)23 t~A

93 - [(- ’13 %!3 - %4) + (%27 - ~8~b taUA -

(~ - P)13 COSA - (a - ~)23 sec A

%4 (a + i3)~ “in A

a24 -(a + p)u s~i - (a + j3)13csc A

a34 o

a~ -j3usin A+~ 6= co” A cot A .

a54 Gtc
T

cos A cot A

a64 (a - ~)~2 sin A - ~(~~ + E23) cos A

a74 -P13 sec A + ~ 813 CO” 2A cot A

a84
Gtc

-— co” A ,
2

ag4 (~ - ~)~3 - ~(e~3 cos 2A - 623) cot A
#

. . .. . ... --- - -——~ -----z —.-—- —.-. —---- -~... ____ . . . . .
. ,- ., .,. --—l—.——y—e... --. —

. .
—-. — . .
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TAEIiEI.- COEFFICIEMTS (afj), OF TEE GENERAL MATRIX

DD?nm?G THE JOINT D~~S - Contfnued

Pm.-PP4d em+.I FmmlulaUw..l..Ab..u” . .-— —.

%5 -(a+p)~ “

%5 (u + P)12

a35
o

a45 !& ~12k3+aE+2b

Gtc
55 -k7 + ~

a65 -(l - ,23)k~b tan A + (a - P)12 - ~~12 + C23) t~A

Gtc -
?5

-k3t=A+~ 513” cos ti sec A

‘ aap -k3 -~tan A .

(1- )
Gtc

95 (
623 ~b sec A - ~ C13 cos 2A - e23) sec A

a16 (
k15 ~ k~6) - (ku - ‘W)

%26 (~ + P)13
\

a36 (kIg - %0) Cos A - (%7 - %8) co” ‘.
,

a
Gtc ~=-k3 - ~ .

a56 Gtc
k7-~ “

a66 (1 ) ‘(~~ + ~23) t= A-c23k7bt~A+ z

~6 ( ‘%4) +~3t~A -k3 tsn A + %3.%3

~ 513 cos 2A sec A

a86 k3 + (kU - Gtc ta Akw) + ~

(“96 -1 )- C23 ~b sec A -
~13(%3”- %4)+ (%27 - %~b+

- G23 sec A(a - 13)13~in A + ~(~13 cos 2A ) .

\ UAPA /

.

.
.

.,
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TABLE I.- COEFFICIEMTS (aij) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS - Contfiued

57

Coefficient Formula

%7 ‘E 1’17+’18) - ‘{k13 + k14) b sec A

%27

as~ i%+ %2) - ‘(%, + k30JJb

(a - ~)u mti’i
. ak7

a57 o

a67 2(CZ- f3)Mcot A

97 (%5 + %26)%3bSecA + (CL- 13)13 ~ - “

a87 (k13 + k14)b sec A

%7 ‘~13(%25 + %6) + (~~ + k3~b2secA +

2(~ - f3)13COSA

a18 ‘ o

%8 0

a38 o

a~ -(a- ~)u cot A

a58 ‘(a - P)*3 &
.

a68 -2(a - P)U cot A - 2(a - B)23 tan A

>8 0

“ a88 o

98 2(~- ~)23 secA “

.
,. .; .~.–-—--—”----r”- —-—. ~-.”-~.-—T-- -—-= .——

, ., ,.: ~ . ... —- —— ..--.— _ --.. .. __
,., >.,.. ...,. .. ...... . ,. - . -
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TABLE I.- COEWFICIENTS (%3) OF THE GENERAL MATRIX
.

. DEFINING THE JOINT DISPLACEMENTS - Concluded.

Coefficient Formula .

alg E
k17 - k18) .- (k13 - 1k~h) b sec A

%29 o

a39 D 1%21-%22) - kg - k30) b

akg o

39 (~ - P)23 &

a69 2(a - P)23 t= A

?9 (% - %6)’13; ‘ec A - (a - 13)13

a89 (
k13 - kl~ b sec A

39 ‘~13(%25 - %6)+ (~g’- k30~b2se. A -

2(U - ~)13 COSA - 2(CL - ~)23 secA

alo -(kl+kkp “

%0 (kl + k~M

a30 -+(V1 + V2 + V3)+ (k5 + ~o)v

a~ k4M + ~T
.

S’50 -k8v - ~T

%0 [(*2+ % + ‘23%)v + (% + ‘23kg)jb tanA

qo (k~M-@tm A ~ “

a80 ~M - ~T

~o [( \-=3+ klo - %3%)V - (% + ‘23~)~b SeC A

.

. . . ,/,-. -–——. .- ~ —..=—- .,.—. —.- .,. - . . . . . . . .
..J.,.::.-..... .. . .: ..-. . . . , . ,-.“-.’,
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TAELE II.- DIMENSIONS AND STII?FMESSPAWWTERS OF

●

sTRucTuR.E~usED IN m NUMERICAL ExAMlzE

RI, .s

I Outer section I ] Carry-tbrougb section Ifi

Item
(fig. l.g) Triangular (fig. 20)

section

BayE12,3and4 mYS5d6 BaySg anall Bay 10

Dimensit
I I

b, in. 30
bl, ~, -----
c, in. 7
tb> ill. 0.050
tc, h. 0.078
a, in. 22

I, in4
‘A, sq in.

90.2
0.863

30
-----

0.05:
0.078

u

90.2
0.863

,
30

I
-----

1’
-----

----- 42.1 42.1
7 7

0.050 0.050 *o.0W7
0.078 0.0T8 0.078

30 9.60 9.76
-----

I 122.58 l“”135.15----b o.g6k 1.229

Stiffness parenwbers

~, in./lb 1.78903X 10-6 2,~414 X 10-6 ----- 3.349163 X 10-6 2,(%2590 x 10-6

f’,in. /lb 0.575SI.X 10
-6

1.75718 X 10
-6 ----- 2.87hghsIX 1# 1.68h.h28x 10-6

j, per lb
-6 -6 -60.075931 x 10 0.075931 x 10 -....- o.07g7@3 x 10 0.0409275X 10-6

@~ per in.-lb o.0430112 x 10-6 0.0E15056 X 10-6 ---.- 0.o128T41 X 10-6 0.0079432X 10-6
1 1 1 1 1

*Ihcludes an allowance for splice plates.

%ffect+ve area for warping stress
(‘= ’f++c’$~+m)

‘These stiffness parameters are defined in appendix C.

.

r.

g.

I
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,

Tti III.- DIllEIWIONSAND STEl?MESS FACTORS

OF THE EFAMS

Besm I Front spar 1-2 I Bulkhead 2-3 I Bulkhead 1-3 I

Material 2@-T3 dmu dbY Steel 8steel

Stress - Ending warping

z, in.
c, in.
t, in.
1, in.4
te, in.
C21te/I

u

Ie, in.1

8
I

30

0.07;
-----
-----
---.-
-----
45.1

I
~, per lb 0.575170X106

x, lb 3.993615X106

p, lb O.516384X 106
6, in. u.1M98
e’ 0.257002

Dimensions

30
7

0.078
-----
-----

-----
-----

21.1

29.25
7

0.125
6.15

q.oml
4.21
0.60
9.84

Stiffness factors

41.34
7

0.125
8.01

0.0181
4.57
0.65

13.21

0. 743315x 106
2.400311 x 106

-0. 290336X 106
8.623871
0.425063

0.338627x 106
4. 346797x106

-1.559397x 106
4.295415
0.706297

o.3321&X106
4.427535x106

-1.780133X106
4.51467

0.781584

=!9=’
.

.

.
m

.

. -e----- --.-:,.:.
:--- . -- ~.. -.. . . . ; . . . . ----- ‘-. .::., . ....”” “--.”.,”,”,. .:.....+- ..,’.’”. .
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AND DISTORTION DISTRI13UTIONIN OUTER SECTION

rigidly built-in and tip bending load of

T.AELE Iv. - STRESS

(a) When root is
2500 pounds is applied

#

(in. )
n (;.)

I
97 -----

2231 2289
4365 2289
6500 2289
7567 2289
8634 2289

.22
44
22
IL
0

176
4107
8036

IIg64
13929
15893

0.6098
.3852
.1899
.0522
.0136

0

0.0504
I
0.6602

.0378 .4230

.0252 I ●2151

.0126 .0648

.0063 I .0199
0 0

(b) When root is rigidly built-in and tip torque of
43,42o inch pounds is applied -

A@”
(radians)

.

--------

0.000003
.000017
.000101
.000159
.000352

&r

.(radians)

-0.006840
-.004975
-.003124
-.001357
-.000582

0

~T

(psi)

o
-13
-76

-462
-1067
-21.09

~ CT IITb Ta/GJ
(psi) (pS:) (radians)

n

-----

-1328
-1341
-1422
-1630
-2000

-----

-2063
-2043
-1916
-1593
-1015

---------

-0.001868
-.001868
-.001868
-.000934
-.000934

(c) When root is warped by ~unt (@2 - “#3) = 1 X 10-6 radians
f’

n
TCW rbw

(;:i) (psi) (psi)

AfJw
(radians)

fy

‘ (radians)

1
2
3
4
5
6

-0.006$
-.0404
-.2452
-.5663

-1.2787,

-------

-0.0016
-.0085
-.0515
-.1615
-.3583

------

0.0025
.0133
.0803
.2519
;5589

0.335155
● 333450

--------

0.001705
.oo8goo
.053668
.08J+167
.186P5

:324550
.270882
.186715

0

----- . .. . --- .-; . .— ., .-, . .-,”----- = ----- ”,:-----““”- --.---=---- ‘“.- ------ ‘
. . . .- ---

.-,
.;.

.“.
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TA13mv.- OUTER-SECTION STI&ESS FACTORS

stiffness
factor

Loadings 1 and 2 Loadings 3 and 4

klM, lb 15892.86 * o

~T, lb o -2078.91

-k3, lb/radi= -U03484 -11o3484

k4M, lb 15892.86 0

~V, lb/in. -178.5~4 , 0

k#, lb/in. o 156.02ti

~, lb/ti./ra&n 27943 27943

k@, lb/in. o 0

T, lb/in.
3

0 50.7371

kloV, lb/in. .-178.5714 0

._

.

..

-.

. . .:, ~.–~.- ---- -.. .—.— . . . . ...-. . . . ......-,-,..<>.’>-,- a .....-. ,.- -
. . _—

.... . . ,-----... ... ... :.,.”. . .



TAmE vl. - STRESS DISTRIBUTION IN CARRY-THROUGH SECTION

(a) When ends e.re rotated by the amount

( )tl+y3 sin A+$3 COBA = 1 X 10-6 radians

Stress [ Symmetrical I Antisymmetrical

B

‘8
, psi 1.31S)0 0.7303

B

‘9-
, psi 1.3100 0.2460

~B
, pet L.lw o.2231

9+

B
T > pBi o 1.6177

C>9

B
T , pBi o 1.6177
C,lo

(b) When ende me warped by the mount

(V1 ‘*3 s~ A-13 COB A) = 1 x 10-6 radians

StreBa Symmetrical. AntisymwtriceJ.

Uav, psi 1.6Q41 1.5662

w

a9-
, pBl 1.2373 0.%272

w, psi 0.9705 0.3900
a9+ i

w
, psi -0.2361

‘C>9
-1.2140

T w
, pai o 0.1038

C,lo

w
r , p13i 0.3683
8,9

o.&130

r
w, psi o -1.0185

b,lo
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T&E12EVII.- CARRY-THROUGH SECTION STIFFNFSS FACTORS

,.

Stiffness.factor Loadings 1 and 3 ILoadings 2 and 4

k~, lb/radian

ku, lb/radisn

%5, lb/radian

k lb/radian
16?

klg> lb/in./radian

“~o, lb/in./radiau

3277276

-1546392

3277276

15k6392 s

o

18418

0

-18418

0

18418

1827064

-1509857

1827064

1509857

126178

94691

0

-u651

-126178

94691

.

-. ----- ~-, , .. - .=-— .—— -T. . ----- -
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‘J!AJL2VIII. - 2YSCEM OF FzWWION2 FOR EK!2 LOADRJ’QCOMDITIOH

E
Lmdirw 1

Lcadiw Q
=* 3
L0wMw4

m~zLoUliOg 3
LoedinR

2ymetrk.d tip bemiing load of 2500 lb

k.lti6ym9trical tip bOndiM kd Of 2m lb
2ymetrlcd tip torque load of 43,420 in.-lb
Autisymmtriwl tip torque 1~ af 43,420 in.-lb

mm
7,5&!m4 -5.883185 -3.w2m5
7.l15g566

2 .7874ca ~;.80’&$ .3.189m -4.510000
5.865823

-3.o19714 0
1.4g19& -2.log~

5.@2485 -5:8cm4
-3.o%m5
-3.o19714

-3.189065
2.787k00 -5.434802

-6.933040 4.510m
-1.491984 -5.23m 2,109975

2.647402 0

-a.54$024 o.2m05a o -0.181257 5.357149
0.063013 0.2W223

-1.363534 -3.477Q31
0.347!X7 . 3.705018 -1.304’707 -2.693647

-o.o164gg 1.0374?95 0.363038 0,016499 -0.004610 o,m4610 -1.375000

2.935596 5.2= 5.906194 1.981974 2.556TL3
2.462%U

o.g20518 -18.76685a
5JJ.JW42 1.34Q586 1.652MM 1,038161 -17.193682

-o.l175S6 -~.131781 5.614173
-0.080~Q

2.787400 -7.157806
4.11.7596 -7.131781

2.517477 -1.1034B4 5.588148 0

-0.0W92
5.61Ja

-7.U7806 5J.5WI8

2.* 7.61m59 6.6?7153
0.943574 -3.487400 6.ubja
2.9k2m5

:00W977 -1.803484 5.14040s o
7.6sL069 6.@@53

0.943574 6,1243zI 5.14b4c5

.

-0,031726
0

o.0317Ek5

o

0.015893
-0.0020789

+

o
-o.ocoQ5q

-.00357
0.0057558

t

I0.015393
o.w20713g

I
o.o15&33
0.CW0789

.
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TABLE IX.- JOINT DISPLACEMENTS FOR EACH LOADING CONDITION

Displacement

*2, radians

Y3, radians

91, radians

@2,radians
$3, radians

Loadiw
‘1

0.0003681
0.00296$13
0.0012872

0.0005019
0.0055292
0.00386u

o
o.oo25~6

o

Loading
2

0.0019304
0.0040942
0.0024238

0.0005217
0.0066615
0.0050147

Loading
3

~/b, rad.isns

w2/b, radians

d
w ~b, radians

#

-0.0002970

-0.0013392
-0.0006535

.-0.0003813
-0.0012307
0.0001279

0
-o.001U05

o

Loading
4

-0.0005616
-0.0015269
-0.0008414

-0.0003817
-0.0014186
-0.0000604

0
~o.oo13282

o

.

.

*

---- .-=-. ,. .,:---.-. — ,..-,-. . . .. ... . . . ..~.’fc.. -. --,.. .... ... ..’. ,,:<:. - . . . . .



TARLE x.- GWUMTED LOADS MD S’lRESSES AROUI%O THE TRIANGULAR SECTION OF

THE SWEFT BOX BEAM FOR EACH LOAD~ .CONDITION

Loading 1 Symmetrical tip bending load of 2500 lb.
Loading 2 Antisyllmetricd tip bending load of 2500 lb.
Loadlns 3 Symmtrtcal tip torque load of 43,420 In.-lb.
Loading 4 Antiqmmetricsl tlp torque load of 433420 in. -lb.

Flange

(%) (2:)

Loading Loading

n 1 2 314 1121314

u
1 8I.1O 8148 -1005
2 U052 1k076 -5&
317734 17TL0 m
4 4689 4654 -lgll
5 23!-2 234-1365
61819718164-2307
7 &177 8110-2076
8 9224 9231 1761
9-5’737-5764 no
LO 140z 14076 -58o

~-1006 4406
-5eo 7634
580 a10767

-lgll u675
-1365 -----
-2306 810501
-2076 %2
1761 l’p.o~

=% -%%

44.26-1167 -IL68
7647 -673 -673

alo739 672 672
11593 -4758 -47s
----- ----- ---.-
Elow a-9* a-~

a37 a-756 a-757
17120 3266 3266
-10690 1317 i319
‘%528 -672. -672

Web or cover I

1

87.7
-132.0
225,2
-46.6
-no.4
-60.3

-%:
z92.6
219.6

LoadirlR

21314

86.9. 78.5 78.5
-132,6 u8.1 IJ.8.I.
224,6 u8.1 u8.1
-46.0 88.7 88.7
-no .7 64.3 64.3
%%& :.: .1?.;

-1222:5 ‘1:4 @3:5
31.1.5 26.1 25.7
219.4 -39.5 -39.5

abdicates a stress composed of a bending and waxplng component.

(h I

1

1124
-1692
2887
-932
42208
-773
1205
-773
2341
17’57

Loading

I

2 3

lm.4 1007
-16991514
28791514
-9201774

-2=4 1.287
i’5@ 18
843 -28

15673 18
2492 209
1755 -36

A4.
1007
1514
1514
1774
u287
.1848
-19

2032

-%
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TAELE xl.- CALCULATED STRESS DISTRIBUTION IN THE

OUTER SECTION OF THE SWEPT BOX BEAM FOR

EACH LOADING COIIOIZl?ION

FLANGES

I (;i) (:i)

Inl Loading I Loading I

3
2
—

I I1 I 2 I ? I 4 I 1 I 2 314 I
6 6501 6528 -672 10740 672

6622 6634 -298 8500 298
6091 6096 -129 6904 129
4298 42g8 -21 4432 21
2220 2220 -4 2242 4

n

6
5
4
3
2

-672
-298
-K?g
-21
-4

10767
85I.2
6909
4432
22h2

WEBS

(:i)

Loading

1

-1691
-2020
-2203
-2275
-2286

2 1314
-1699
-2023
*2204
-2275
-2286

1513 1513
14SL 141.1
1352 1352
1329 1329
1327 1327

1
672
298
li?g“
21
4

Loadti I

1 I 2 I 3

2887 2879 1513
2558 2555 1411
2375 2374 1352
2303 2303 1329
2.~2 2292 1327

COVERS

Tb
(psi)

n Loading
1 2 3 4

6 -932 -g20 1774 1774
5 -42o -419 1935 1935
4 -134 -132 2025 2025.
3 -22 -22 2061 2061
2 -4 -4 2066 2066

i

41

1513
1411
1352
1329
1327

——. ----- ,.. . .. . ..:. -----:--- . ...- —.= . . . . . . . ... . . . ..s. : .,. ..,. .......- .. $.- - .;..“-., ..:... . . -..-.,.
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TABLE XII.- ~ STRESS DISTRIBUTION IN THE

cmY-TERoUGH SECTION OF THE WEFT Box BEAM

FOR EACH LOADING CONDITION

I?LANGES

OF I ‘%
(psi) (psi)

n Loading “

1 2 3 4 1

8 2 36 -756 -757 10500

9- 1.202 112 -784, -257 9300
9+ 1587 305 -722 -238 7939

WEBS

Loading

2 3 4

10466 -996 -995
3424 -968 -333
2903 -866 -298

-rf

(psi)
‘r
(psi)

n Loading Loading

1 2 3 4 1 2 3 4

9 -773 758 I-8 -1848 -773 -15673 18 2032
10 0 11977 0 -1948 0 -11284 0 1932

t

COVERS “

I I ‘b

I I (psi)

Id Loading

1 ‘2 3 4

9 1205 843 -28 -19
10 0 -3391 0 77

#

..-_ .—. ~. ..— .-. — . --..——— .y. — .— -..—.. ---- —.-— . -..-..—-.. . ..- . ‘,, .”.,..:..:.-’..
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TABLEXIII. - CALCULATED DEFLECHCWAU DR0TATHC@9!EE OUTER SECl!IOMOF

9?EESWEEC H)XBEAME’ORE ACEWIHG COI?DI!CIOR

Lodlw 1 ~+rical tip banding load of ~ lb
Loading 2 Antinymdtical tip ~ 10ti d 2500 lb

~ 3 mttid tip tOrqM ~ Of 43,k20 in.-lb
Lowlillg4 Antiqmmttical ti~ torque load d 43,420 in.-lb

?Poaitim rqtation Is front Epar dowmmxd.
~

1’

I

I

t

, > ,
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h ,Joint I

‘kKL.J.int2
Ill‘- ‘ \\\. Trianauiar z

i“I Carry- \
1. through “---- ‘ ~/Fy’spar\:ectio~z

/

III
L ~ear ‘p#’~

.
.—— ——

Bulkhead

Figure 1.- Idealized sweptback box beam.

*

Figure 2.- Exploded view of idealized structure showing internal forces I
on each component around the triangular section.
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.—-~=E%=
Joint 3

Figure 3.- Free-bo’dydiagmin showing forces at the joints.

.

W3

Figure 4.- Positive directions of joint displacements.

.
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‘:ldgmf+——————-
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(a) Loads.

o
.

r ——— ——— —
1

T

Qd91M&t+.
“t-

T
x

——— — .——

1.’-/..’-/7jR.
I
z .

(b)

.-

Distortions.

,

(c) Differential element.

Figure’5.- Loading and distortions of beam.

.’
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a

Bending stresses Warping stresses

(a) Assumed stress distributions in actual structure.

.

(b) Equivalent flange forces in idealized structure.

Figure 6.- Assumed distributions of stresses and forces in actual and
idealized structures.

.
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%,t-’lff

t~

(a) Actual cross section.

(b) Equivalent cover.

+’1

k-+-l-
,

(c) Idealized cross section.

Figure 7.- Relationship between actual and idealized cross ‘sections.

\
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v

I I 128 I I I

.

2.4 -

2.0

1.6 “

1.2

.8

4

,

I I I

I I I

1 1 1

I 1 I I I I

4

/
.

=@=-
i I I

●

8 12 16

2- ‘ ‘
C lte .

I
Figure 8.- Chart for determining the effective moment of

‘b-dS . Ie = 1(1 + v).
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Figure 9.- Detailp of

L&lll&#
SectlonA+ .

Y
sweptback box beam used in tests and analyzed in

illustrative exsmple.

Figure 10.- Antisymetrical bending test setup of sweptback box besm.

-
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, Positive rotation

Positive deflection

x,in.
~0 40 80

e
e-
0
~ .4

‘K

Rear epar
0
z

s
.8

Front ep

i.2

.

K
❑

~.008
co
G Parallel ta
o
>.004

flight direction

o
z

X, in.

:0400

(a) Symmetrical tip bending load.

e

. 79

~ Experimental (ref. i,2)
— Theory withoutsheariag
-—- Theory with shear iag

L61= u

(b

l-’ “-~-w
Perpendicular to epors

) Antisymetrical tip.bending

Figure 11.- Experimental and theoretical deflections and rotations of
sweptback box beam.
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ositive rotation

Positive deflection

‘43.42 In.- kip;’

.0
m

-.2 - 5.008

><“!izzzi’

Pexpendkwlor
m to Spors

Front spor G

2 n E
.

g--ml g 4)04
❑

~ z Porollel to
~ X,h z

40 80 a
fllght dlreotlon

%no
Reor spo~ 00 40 80

X,in.

J.

-9 [

(c) S-trical tip torqye load.

~ Experlmentai (ref.1,2)
— Theory withouf ehear log
— Theory with shear lag

.Ib

(d) Antisymnetrical tip torque load.

Figure 11.- Concluded.
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Figure 12.-
normal

I
. . . . -.

81

(a) Symmetrical tip bending load.

(b) Antisymetrical tip bending had.
o

Experimental and theoretical spanwi.sedistribution of flange
stresses and spar shesr stresses of tieptback box besm. ‘

\ .
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Flange normal stress

“C’%

‘y

1
[

-1 -0

.

2

i [~

I 1

Os%”O 4SA2 rn.-kIp8
e

I i

#

01
I

(c) Symmetrical tip torque load. -

0 E2perhnentol(ref.1#)
--EIamento theory
—Theory wl%owfeheorlog
—Theory with sheer log

(d) Antisymmetrical tip torque load.

Figure 12.- Concluded.‘
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, ‘t

2.5 klpa

c
I

d a

16r

(a) Symmetrical tip bending load;

o Experlraental[retl,2j

L

—Elmnsntary Mary
—Thmry wlthautohoartag

6.7 —7keary withshearlag

h

\

I

(b) Antisymmetrical tip bending load. ~

Figure 13.- Eqerimental. and
stress

theoretical chordwise distribution of normal
of sweptback box besm.
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4242kn:kipe k%? In-kips

I

[

i“a~b c-+
(c) Symmetrid tip torque load.

Q Experimental (ref.1#)

k“.
—Elementary theory

H+t7
—7heary wlthaut ahwr lag .
—7hoory with sheorlag

I

&421n-kiPe . .

e f

/ ,.- t

(d) Anti_tricd tip torque lbad.

Figure 13.- Concl@ed.
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.

(a) Stress distribution” (b) Flange forces in
in actual structure. idealized structure:

.

Figure 14.- Shear-lag stresses and forces in actual and idealized
structures.

,.

$

Figure 15.- l’yzE of idealized structure reqpired
effects in the analysis.

to include shear-lag

.
#

...-. ---- ---- --,----- -—-~. —y-?———~-... .- ._ ._. _ -—. -.. -.v. - ——— _.. __. — -.. —
. . .

-.

. . .,
. . . .



------- ~--.+ ...—----- . .. ..-—. _+ . _ ..

86

Normai stress

-.

Shear stress

NACA TN 2232

= ~ Rigid Rigid

— Elementary theory

(a) Symmetrical bending.

.

n

w?
Distortion ‘

‘W2.

Normai stress Shear stress Distortion

T

(b) _trical torsion:

Figure 16. - Calculated effects of bulkhead flexibility on the stresses—.
and distortions of a swept box beam.
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x

T
2

J- Y

Figure 17. - Plate-stringer combination analyzed to determine the effective
width-of cover acting with bulkhead.

t/1 I
.241 I I I I ,

0 .2 4 .6 .8 1.0
A

.

, 2te

Figure 18. - E“ffectivewidth of plate acting with stringer. (See
appendix B).
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Figure 19. - Idealized outer section used in illustrative example.

“L-—--

Figure 20.- Idealized

...____-----> ..

carry-through

I--6=42.,--I
=s?=’

section used in illustrative example.
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Figure 21.- Force groups of outer or carry-through sections used in
illustrative exsmple.

. .

62,.,, f$a.l.lb
(a)

,...-

.

Figure 22.- Types of individual analyses of outer section used in
illustrative exsmple.
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(cl)
/

(b)

R=* I for symmetrical loads

R=-1 for antisymmetrical loads” -

Figure 23.- Types of individual cu&lyses of carry-tbrokh sectioriused
in illustrative exunple.
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